University of California Riverside Global Weyl Modules for Twisted and Untwisted Loop Algebras Abstract of the Dissertation Global Weyl Modules for Twisted and Untwisted Loop Algebras
نویسنده
چکیده
OF THE DISSERTATION Global Weyl Modules for Twisted and Untwisted Loop Algebras by Nathaniael Jared Manning Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, June 2012 Dr. Vyjayanthi Chari, Chairperson A family of modules called global Weyl modules were defined in [7] over algebras of the form g⊗A, where g is a simple finite–dimensional complex Lie algebra and A is a commutative associative algebra with unity. Part I of this dissertation contains a characterization the homomorphisms between these global Weyl modules, under certain restrictions on g and A. The crucial tool in this section is the reconstruction of the fundamental global Weyl module from a local one. In Part II, global Weyl modules are defined for the first time for loop algebras which have been twisted by a graph automorphism of the Dynkin diagram. We analyze their relationship with the twisted local Weyl module, which was defined in [8], and with the untwisted global Weyl module.
منابع مشابه
Weyl Modules for the Twisted Loop Algebras
The notion of a Weyl module, previously defined for the untwisted affine algebras, is extended here to the twisted affine algebras. We describe an identification of the Weyl modules for the twisted affine algebras with suitably chosen Weyl modules for the untwisted affine algebras. This identification allows us to use known results in the untwisted case to compute the dimensions and characters ...
متن کاملTwisted Demazure Modules, Fusion Product Decomposition and Twisted Q-systems
In this paper, we introduce a family of indecomposable finitedimensional graded modules for the twisted current algebras. These modules are indexed by an |R+|-tuple of partitions ξ = (ξ)α∈R+ satisfying a natural compatibility condition. We give three equivalent presentations of these modules and show that for a particular choice of ξ these modules become isomorphic to Demazure modules in variou...
متن کاملOn certain categories of modules for twisted affine Lie algebras
In this paper, using generating functions we study two categories E and C of modules for twisted affine Lie algebras ĝ[σ], which were firstly introduced and studied in [Li] for untwisted affine Lie algebras. We classify integrable irreducible ĝ[σ]-modules in categories E and C, where E is proved to contain the well known evaluation modules and C to unify highest weight modules, evaluation modul...
متن کاملRelative Reduction and Buchberger's Algorithm in Filtered Free Modules
In this paper we develop a relative Gröbner basis method for a wide class of filtered modules. Our general setting covers the cases of modules over rings of differential, difference, inversive difference and difference– differential operators, Weyl algebras and multiparameter twisted Weyl algebras (the last class of rings includes the classes of quantized Weyl algebras and twisted generalized W...
متن کاملLocally Finite Simple Weight Modules over Twisted Generalized Weyl Algebras
We present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. When a certain commutative subalgebra is finitely generated over an algebraically closed field we obtain a classification of a class of locally finite simple weight modules as those induced from simple modules over a subalgebra isomorphic to a tensor product of noncommutative to...
متن کامل